Tweets from Space

Check out an article from Marotta Space Research.  It will be posted shortly at Space Safety Magazine.

Tweets from the High Frontier

Space.  It’s vast.  It’s majestic.  It’s so big it defies comprehension and, occasionally, description. But, what if space were full of people?  People with smartphones?  What if there were communities teeming with people living, working and playing up there?  They’d probably have lots to say about their experiences in orbit amongst the space colonies scattered across the high frontier.

Fair reader, you’re in luck.  I have traveled to the future and obtained a representative sample of tweets from space.  What follows are some examples of what humans might say about their lives in future space settlements:

Can’t believe how big this place is @IslandThree! There are actually rain clouds in here! And I can’t see down to the other side! #impressed

island31a16d-goodvista1a

image credit: Ed Sweet

Space settlements will be big – much bigger than contemporary ‘tin-can’ space stations like ISS or Tiangong-1.  The latest space settlement design, Kalpana One, envisions a cylinder 250 meters in diameter and 325 meters long – about the size of some of the largest cruise ships today.  Kalpana One can accommodate 3,000 people living in a business park-like setting.  This is a small space settlement – some of the larger designs are miles long and can host hundreds of thousands of people along with plenty of space for forests, farms, lakes and rivers.  All of these structures can be built in space using the same kinds of proven techniques that for decades have been used to construct massive supertankers in shipyards here on Earth.  The challenge is getting the labor and raw materials to start the first community.  Perhaps we should check the help-wanted ads…

Wanted: Agile people with strong upper bodies for lucrative work. Personalized spacesuit included. Join the elite asteroid miners today! #PR-HR

 

Immediate opening: 3D printer technician, must have experience with molten metals in a hazardous environment. Good pay, great views #Spiderfab-HR

The primary reason existing space stations are so small is that they are built on Earth and launched into space on rockets.  And rockets are expensive – it costs over $4,000 to launch one kilogram into space on the cheapest rocket available today.  But future space settlements will not be built on Earth and launched into space.  In-situ raw materials – collected primarily from asteroids – will be refined and shaped into the beams, panels, and windows that will form the settlement.  Just like sailing ships carried shovels and axes to the New World (not log cabins and farm silos), rockets will be used to carry the tools that will build settlements – not the settlements themselves.

Furthermore, the human resources paradigm of space travel is going to change. Currently, thousands of support personnel on Earth work to launch a handful of people into space.  That is set to change as new launch companies field rockets that require only a handful of support staff.  Better rockets and lower labor costs mean rockets can launch more frequently which will make them both safer and cheaper. Soon, a minority of people on Earth will work to support thousands of people living, working and playing in space.  And all those people will need to eat.  Are you getting hungry? Let’s see what’s on the menu in orbit…

For all you space cadet foodies: tried the @Bernal bioreactor algae pudding – gooey, weird and sweet. #spacecuisine

 

@IslandThree’s solar-roasted tilapia is “flaky, light and delicious” says @SnootyChef. Try the local veggies too! #spacecuisine

Many people enjoy the novelty of freeze-dried, packaged ‘space food’ (remember “astronaut ice cream” when you were kid on those trips to the museum?) but few people would want to eat that for the rest of their lives.  Luckily, space settlements will have the capability to grow fresh food.  In fact, space settlements will be required to grow much of their own food because of the size of their populations and the exorbitant cost to ship food up from Earth.  The unusual space environment and unique architecture of space colonies will allow for extremely productive agriculture.  First, the sun shines all day in space allowing for major energy inputs into production. Second, irrigation, fertilization, sowing and harvesting will be tightly controlled and integrated into the architecture of the settlement.  Third, pests, weather and other Earth-bound agricultural problems will not afflict farming in space.  All of these factors will combine to supercharge food and fiber production in space settlements.

So, we’ve arrived, we’ve got a good job and we’ve got plenty of food to eat.  But what is there to do for fun in space?  Contemporary space tourism companies are betting that people will pay millions of dollars to simply look out the window at Earth and spin around in zero-gravity for a week.  While that may appeal to some, most may quickly bore of it and start looking for more.  Recreation in a space settlement will offer many more options than what current space tourism provides.  Spherical pools floating in mid-air, piloting an actual starfighter, and literally flying like a bird are just a few of the possibilities….

Exclusively @IslandThree Resort: come fly a REAL X-Wing in ACTUAL space! Shoot drones and complete the obstacle course. Earn your Rebel wings! #RogueSquadron


Dive into the water, stroke stroke stroke then I shoot out the other side! Spherical pools @Bernal resort are crazy! #nextOlympicsport ?

 

image credit: David A. Hardy

image credit: David A. Hardy

That was fun but space settlements can serve a higher purpose than merely offering sustenance or recreation.  Throughout history there are numerous instances of people with similar religious or philosophical leanings banding together to form communities where they can pursue their interests without interference.  Space settlements offer the ultimate refuge for people seeking peace and  isolation.

Want to live in harmony with like-minded individuals? Do you feel a (much) higher calling? Come join us in the first temple in orbit! #L5Mormons

In fact, a recent film made the exact same conclusion (albeit in a wholly negative light) that space settlements can act as enclaves for like-minded individuals.

Human nature being what it is, it is unlikely that space settlement will be as innocuous, high-minded and fun as depicted in the selection of tweets above.  But the purpose of space settlement should not be to create utopias in the sky.  While they can expand the resource base of Earth and provide a higher standard of living for all who occupy them, space settlements will not by themselves eliminate war, greed, stupidity or laziness.  Rather, the purpose of space settlement is to expand the stage upon which the human drama plays out.  Space settlements will be little Earths full of love, hate, sadness and joy.  While the food there may be better and the recreation might be different, space settlements, at the end of the day, will be like little Earths: familiar and cozy.

 

Taking a break, considering a mini CELSS ‘experiment’

I just read the Orbital Space Settlement Tasks page on Al Globus’ website. Very interesting reading. I think I might try this mini Closed Ecological Life Support System ‘experiment’:

Do research into closed ecological life support systems by placing small amounts of soil, plants, and microbes in sealed jars. See how long they can survive with just sunlight coming in.

Ok so a quick google search of “closed jar terrariums” shows that this is actually pretty common. This person has a pretty cool site on how to make them using moss. Looks likeactivated carbon is an essential ingredient – possibly to filter out contaminants?

Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP

Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP

How nice would it be to be able to walk barefoot over soft moss and pick little flowers growing in greenhouses in the next generation of space stations?

 

Part I: The pros and cons of Rockets for delivering orbital raw materials

In a previous post I described the four new options for amassing raw materials in orbit for the purpose of space development. They are: using rockets to lift stuff up from Earth, using mass drivers on the moon to shoot regolith into orbit, capturing asteroids a la Planetary Resources, and constructing a lunar space elevator a la LiftPort to transfer lunar ore into orbit. In this post I will describe the basic advantages and disadvantages of each method.

The goal here is to determine the fastest and most cost-efficient method for collecting hundreds of tons of raw material in Earth orbit. Hundreds of tons – if not thousands – are necessary to manufacture the large structures necessary to develop space i.e. to build a self-sustainable and self-replicating civilization in orbit. Let’s talk pros and cons one by one:

I. Rockets – There are several big benefits to using rockets:

  1. Proven technology with a deep market: rockets are proven and there are lots of vendors to choose from. It’s the “devil we know” versus the other technologies which are all unproven.
  2. Direct to orbit: rockets are the only option available to boost items directly from the Earth’s surface. This, in theory, allows one to boost finished structures to orbit, skipping the raw material/manufacturing stage. This is both a blessing and a curse: while having some finished products in orbit will be useful (Bigelow modules and 3d printers immediately come to mind), especially in the early stages of space development, ultimately the goal is to build an indigenous manufacturing base in orbit, not just boost everything up from Earth. Also, rockets are the only way to get people into orbit!

However, the major drawback to using rockets is, of course, their expense. Rockets are ultimately too expensive to boost anything except the highest value cargo. This is reef that every space development has foundered on since the beginning of the space age.

Future posts will discuss mass drivers, asteroid capture and lunar space elevators.

An Expanding Menu: Rockets, Mass Drivers, Asteroid Capture and Space Elevators

Since the halcyon days of Gerard K. O’Neill and his grand visions of massive solar power satellites and palatial space colonies, space cadets the world over have pondered the best way to collect the raw materials necessary to construct such structures in orbit. Many, including myself, deferred to Mr. O’Neill’s assertion that the lunar mass driver is the best mechanism to amass a raw material base in orbit. Indeed, there is something elegant in the idea of combining thousands of tiny cargos to form one large resource pile, as opposed to the brute force concept of launching one gargantuan payload at great expense. On the one hand, space enthusiasts have the familiar image of an explosive rocket breaking the surly bonds of Earth (and occasionally failing) in order to put a complete payload into orbit. But O’Neill offered a new, more tranquil vision: rows of silent, miles-long electromagnetic catapults safely and efficiently zooming thousands of tiny payloads into orbit over many months.

Mass Drivers….

Nice day for a lunar picnic next to the serene mass driver. Courtesy of the Lunar Institute. Credit: Pat Rawlings.

….Versus Rockets.

Hot dog! Look at that mother go! Yipppee! I just wish it weren’t so risky and inefficient…

But how times have changed. Today we have two additional visions. The first involves Planetary Resources and asteroid capture. The second involves LiftPort and the lunar space elevator.

As the readers of this blog know, Planetary Resources is a well-funded and well-staffed outfit based in Seattle, WA. They hope to develop new technology and methods to eventually capture and mine near-earth asteroids. LiftPort, the space elevator company, is also based in Seattle, WA and is slightly less well-funded and well-staffed than Planetary Resources. However, I would argue that LiftPort’s ideas and vision generate just as much enthusiasm as do the ideas of Planetary Resources. Furthermore, LiftPort has already failed and resurrected itself AND has successfully crowd-sourced innovation in the past. These two factors alone (perseverance in the face of failure and the ability to manage far-flung groups of researchers) indicate that LiftPort has the potential for success*. In fact, one could argue that Planetary Resources, with its venture capital and in-house engineering staff, represents the old style (1990s) of aerospace innovation while LiftPort, with its open(er)-source development plan and bootstrapping culture represents a new way, or at least a different way, of generating innovation.  

LiftPort, after an ignominious bankruptcy in 2007, is back from the dead, having just raised almost $80,000 over $110,000 of R&D funding in less than a month on, of all places, Kickstarter.

But let’s get to brass tacks – which method is the best way to support space development: rockets, mass drivers, capturing asteroids or lunar space elevators? In future posts I will discuss how each of these options have benefits and drawbacks to amassing raw materials in orbit. UPDATE: Part 1 of 4 (Rockets) is linked above.

*Full disclosure: I used to work for LiftPort. I quit in 2004, thinking at the time that the company was doomed. In  2007, I was proven right. But now, in 2012, I’m not too sure. LiftPort is scrappy and their vision is mesmerizing. Even if they don’t build a space elevator, they might generate enough IP and interest to get bought up by Google X Labs or some other group of yuppie-genius billionaires who will then carry the LiftPort vision to fruition.

Something is brewing in Seattle…

Something strange is brewing in Seattle. Consider this: yesterday Planetary Resources, a new space start-up, announced that it will “ensure humanity’s prosperity” by overlaying “two critical sectors – space exploration and natural resources – to add trillions of dollars to the global GDP.” Before you call bullspit, you ought to know that PR is backed by an all-star crew of space cadets: Peter Diamandis, Eric Anderson, Larry Page, Eric Schmidt, James Cameron* and some NASA genius named Chris Lewicki, amongst others. Planetary Resources will make a big announcement on Tuesday at Seattle’s Museum of Flight.

Then, today, I read a blog post about some company called Arkyd Astronautics and how they plan on having a major press conference on Tuesday at Seattle’s Museum of Flight. Who runs this outfit? None other than NASA genius Chris Lewicki. A coincidence? I think not. What gives?

Turns out these two organizations are linked but their marketing/PR people are not. Best as I can tell, Arkyd will be working with Planetary Resources to attempt to recover a platinum-bearing asteroid. Translation:

Internet billionaires are working with NASA geniuses to figure out a way to capture and mine an asteroid.

If this is true (it’s all speculation at this point), this would be the biggest space news since Virgin Galactic was announced. Probably bigger as the implications are much more serious: this venture, even if mildly successful, could jump-start space development and ultimately lead to the settlement of extraterrestrial bodies. We’re talking hundreds of millions of dollars of private investment in space-based infrastructure, if not billions.

The press conference announcing the details is scheduled for Tuesday April 24 at 10:30 am PDT. 

This is not a drill, people. Take a deep breath because the space age is just starting.

*God help James Cameron and all these knuckleheads if this is some kind of stupid publicity stunt for a movie.

G-Lab needs a space station and a launcher. Are you thinking what I’m thinking?

I’m starting to think humanity is on the brink of a full-fledged space renaissance, and this time for real. The good news just keeps on coming, this time from the venerable Space Studies Institute. Yes, that SSI. The one founded by Gerard K. O’Neill, the godfather of space cadets everywhere. The guy who invented the space colony. The one that used to be headquartered in Princeton, NJ (of all places) and spent the last twenty years being irrelevant until it got a new lease of life with its new President Gary Hudson. Yes, that Space Studies Institute.

Yes, that SSI.

SSI has got its mojo back and recently announced that it’s going to – basically – build a space station using private donations:

In order to investigate the long-term effects of partial gravity on humans and other vertebrates, the Space Studies Institute proposes the private development of a co-orbital free-flyer laboratory, in trail ~10 km aft of and station-keeping with the International Space Station (ISS)….

Our SSI approach calls for these initial three phases to be funded exclusively by private contributions or sponsorships.

Talk about ballsy! I didn’t find any concrete numbers but something like this will probably cost at least $200 million. Think about it: design, development and construction of a small space station and then a “heavy launch” vehicle to get it all into orbit. The launch alone will cost ~$100 million using the lowest-cost launcher (almost) available: the Falcon 9 Heavy.

But will SSI accept donations in kind? Hmm let’s see. I know (of) a guy who is selling space stations. And I know (of) a guy who is selling rockets. If the justification to ask for hundreds of millions of dollars in donations is that the donor wants to remembered forever, why not go straight to the biggest space geeks out there who, by the way, have exactly what you need anyway?

In short, if they’re being ballsy, SSI should just ask Robert Bigelow of Bigelow Aerospace to donate a BA-330 module to this effort and ask Elon Musk to donate a Falcon 9 Heavy launch to put the G-Lab in orbit. You can call it the Bigelow-Musk Orbital Research Facility or something like that. Bottom line, it gets the job done. And, as my dad always said, there’s no harm in asking!

Robert Bigelow + Elon Musk = G-Lab?

Could SSI's G-Lab be a donated Bigelow BA-330 module launched on a donated Falcon 9 Heavy? Why not?

Big news: Boeing “all-electric” satellites

File this under “news nerds need to know:” Boeing’s new 702SP satellite will use on-board electric ion engines to travel from geosynchronous transfer orbit (GTO) to it’s final location in geosynchronous orbit. In the past satellites have typically used a separate booster for final orbital insertion. Electric engines have long been used for station-keeping, but this is the first time they will be used for major orbital maneuvers on a commercial satellite.

This is both good and bad news. It’s good for obvious reasons: commercial industry is becoming more confident with electric engine technology and is attempting to incorporate it into nongovernmental (i.e. more risky) payloads. I hope to see greater use of this technology moving forward.

This is bad news, however, because it could signal the end of what was a promising business opportunity in space: interorbital space transfer shuttles or “tugs.”

A proposed space tug providing support to the Hubble Space Telescope - an obsolete idea?

For decades scientists and engineers have proposed space tugs as a way to reduce launch costs to geosynchronous orbit and, more recently, as a way to make money. Now that Boeing has figured out a way to incorporate the ‘tug technology’ directly into the satellite, the space tug line-of-business may be closing, or at least drastically reduced. As capitalists we must applaud greater efficiency in the space economy, but as space enthusiasts we feel a bit disappointed that now there is one less (obvious) opportunity for entrepreneurship in orbit. However, in time, this technological development may lead to something better that no one has thought of yet. Progress marches on!

 

A billion asteroids?!

NASA and JPL, two obviously reputable space exploration organizations, have claimed that there a billion meter-sized asteroids in near-Earth space! The exact quote:

Because of their small size, object’s [sic] of this size are difficult to discover but there is likely to be nearly a billion objects of this size and larger in near-Earth space and one would expect one to strike Earth’s atmosphere every few weeks on average.

This is very exciting news for the Dragon Flyer. It means that there are potentially hundreds of millions of targets for the mission. However, I am skeptical – this seems too good to be true. The full article (read it here) offers no substantiation for the billion-asteroid claim and does not define “near-Earth space.” Also notice that pesky clause “and larger.” Are most of the asteroids about a meter in diameter or are most larger than what can be accommodated by the Dragon Flyer? So many questions! Thus, I have contacted the authors for more information. Stay tuned!

Asteroids in our Solar System - there may be a lot more out there!

Another Dragon delay – no big deal.

Another month, another Dragon launch delay. The second Dragon-ISS test flight (and third Falcon 9 flight, ever) will not occur before March 20. It was originally scheduled for January. But do I look worried? Not at all. This flight will combine two test flights into one and thus requires “an insane amount” of testing and preparation, as described by Elon Musk. This need for testing and combining two flights into one is the reason for the delay. However, because it will kill two birds with one stone, accomplish two test flights at once, SpaceX may actually be ahead of its development schedule after a successful late March/early April launch. So this delay, in the long run, is no big deal.

What, me worry (about the Dragon development schedule)?

Conspiracy theory alert: could SpaceX be planning its first cargo run to ISS during election season in order to give a boost to NASA’s commercial space efforts and thus Pres. Obama?

The SpaceX marketing team is good. A little too good.

The news media reported yesterday that SpaceX has sold two more Falcon 9 launches. SpaceX will launch two AsiaSat ‘birds’ in 2014. On a rocket that has flown twice. Two years ago. Using a fairing that hasn’t even been tested, let alone built. What kind of magic fairy dust are the sales people at Space X sprinkling around to get these sales? And AsiaSat isn’t alone – SpaceX has a healthy launch manifest for its Falcon 9 with billions of dollars of launches on back order from both government and commercial customers.

My question is – what are all these people smoking?

Dec 2010 Falcon 9 Launch - hope or hype?

Now, don’t get me wrong – you won’t find a bigger cheerleader for SpaceX than me. But let’s get real – the Falcon 9 has flown twice. The third (test!!) launch has been delayed numerous times for various reasons (some out of SpaceX’s control, to be fair). Forgive me for my ignorance but how is SpaceX selling all these launches? Is it price competition? Does the swaggering Elon Musk charm these guys into a trance to get them to sign the dotted line?

Or are we witnessing space development hype become space development reality? Will SpaceX really pull it off? I sure hope so.